43 research outputs found

    Rounding, filleting and smoothing of implicit surfaces

    Get PDF
    © 2017 CAD Solutions, LLC We describe an approach for performing constant radius offsetting and the related operations of filleting, rounding and smoothing for implicit surfaces. The offsetting operation is used as the basic component for defining the remaining operations. These operations are important operations for any modelling system. While it is known how to perform these operations for parametric representation and polygon meshes, there is limited prior work for implicit surfaces and procedural volumetric objects. The proposed approach is based on repeatedly computing the distance to a given implicit surface and its offset surfaces. We illustrate the results obtained by this approach with several examples, including procedurally defined microstructures and CAD objects

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions

    Constraints on anomalous QGC's in e+ee^{+}e^{-} interactions from 183 to 209 GeV

    Get PDF
    The acoplanar photon pairs produced in the reaction e(+) e(-) - → vvyy are analysed in the 700 pb(-1) of data collected by the ALEPH detector at centre-of-mass energies between 183 and 209 GeV. No deviation from the Standard Model predictions is seen in any of the distributions examined. The resulting 95% C.L. limits set on anomalous QGCs, a(0)(Z), a(c)(Z), a(0)(W) and a(c)(W), are -0.012 lt a(0)(Z)/Lambda(2) lt +0.019 GeV-2, -0.041 lt a(c)(Z)/Lambda(2) lt +0.044 GeV-2, -0.060 lt a(0)(W)/Lambda(2) lt +0.055 GeV-2, -0.099 lt a(c)(W)/Lambda(2) lt +0.093 GeV-2, where Lambda is the energy scale of the new physics responsible for the anomalous couplings

    Trie partitioning process: Limiting distributions

    No full text

    The ubiquitous digital tree

    No full text
    Abstract. The digital tree also known as trie made its first appearance as a general-purpose data structure in the late 1950’s. Its principle is a recursive partitioning based on successive bits or digits of data items. Under various guises, it has then surfaced in the management of very large data bases, in the design of efficient communication protocols, in quantitative data mining, in the leader election problem of distributed computing, in data compression, as well as in some corners of computational geometry. The algorithms are invariably very simple, easy to implement, and in a number of cases surprisingly efficient. The corresponding quantitative analyses pose challenging mathematical problems and have triggered a flurry of research works. Generating functions and symbolic methods, singularity analysis, the saddle-point method, transfer operators of dynamical systems theory, and the Mellin transform have all been found to have a bearing on the probabilistic behaviour of trie algorithms. We offer here a perspective on the rich algorithmic, analytic, and probabilistic aspects of tries, culminating with a connection between a sorting problem an

    Electroweak measurements in electron–positron collisions at w-boson-pair energies at lep

    Get PDF
    Contains fulltext : 121524.pdf (preprint version ) (Open Access

    CD4 + T CELL MATTERS IN TUMOR IMMUNITY

    No full text
    corecore